CONCOURS EMIA – Sciences Economiques et Sociales

CONCOURS CTA/SD Sciences Humaines, option Sciences Economiques et Sociales CONCOURS 2006

EPREUVE DE MATHEMATIQUES - PROPOSITION DE CORRECTION

Corrigé non officiel rédigé par Jean-Guillaume CUAZ, enseignant au Lycée Militaire de Saint-Cyr, jgcuaz@hotmail.com

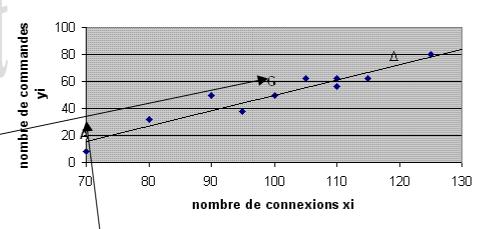
Exercice n°1

1) Nuage de points :

(l'origine des abscisses est 70)

2) Le point moyen G a pour coordonnées : G $x_G = \overline{x} = \frac{\sum x_i}{10} = 100$, $y_G = \overline{y} = \frac{\sum y_i}{10} = 50$ placé sur le graphique

Site de commerce électronique



3) L'équation de la droite Δ des

moindres carrés est de la forme y = mx + p avec $m = \frac{Cov(x; y)}{V(x)}$ et $G \in \Delta$

Or
$$Cov(x; y) = \frac{1}{10} \sum_{i=1}^{i=10} x_i y_i - x \times y = \frac{1}{10} \times 52850 - 100 \times 50 = 5285 - 5000 = 285$$
.

De plus
$$V(x) = \frac{1}{10} \sum_{i=1}^{i=10} x_i^2 - (\bar{x})^2 = \frac{1}{10} \times 102500 - 100^2 = 10250 - 10000 = 250$$
. Ainsi, $m = \frac{285}{250} = \frac{57}{50} = 1,14$

Comme $G \in \Delta$, ses coordonnées vérifient l'équation de Δ , c'est-à-dire $y_G = mx_G + p \Leftrightarrow 50 = 1,14 \times 100 + p$ donc p = -64, et l'équation de Δ est finalement y = 1,14x - 64.

Pour la tracer, deux points suffisent. On a déjà le point G. On détermine un autre point, en prenant par exemple $x = 70 \Rightarrow y = 1,14 \times 70 - 64 = 79,8 - 64 = 15,8$, d'où le point A(70; 15,8)

Exercice n°2

1) f est définie pour toutes les valeurs de x telles que |x| > 0, c'est-à-dire $D = -\infty$; $O[\cup]0; +\infty[]$. L'ensemble de définition de f étant symétrique par rapport à zéro, pour tout $x \in D$, $-x \in D$ et $f(-x) = -x \ln(|-x|) = -x \ln(|x|) = -f(x)$ donc f est impaire.

Puisque $\lim_{x \to +\infty} |x| = +\infty$, et puisque $\lim_{u \to +\infty} \ln(u) = +\infty$, alors en posant u = |x|, on obtient $\lim_{x \to +\infty} \ln(|x|) = +\infty$, puis par produit $\lim_{x \to +\infty} x \ln(|x|) = +\infty$, c'est-à-dire $\lim_{x \to +\infty} f(x) = +\infty$. De la même manière, puisque $\lim_{x \to -\infty} |x| = +\infty$, on obtient $\lim_{x \to -\infty} \ln(|x|) = +\infty$, donc par produit $\lim_{x \to -\infty} x \ln(|x|) = -\infty$, c'est-à-dire $\lim_{x \to -\infty} f(x) = -\infty$.

Enfin, $\lim_{x\to 0} |x| = 0^+$, et puisque $\lim_{\substack{u\to 0\\u>0}} \ln(u) = -\infty$, on en déduit, en posant u = |x|, que $\lim_{x\to 0} \ln(|x|) = -\infty$. Puisque $\lim_{x\to 0} x = 0$,

on obtient alors une forme indéterminée « $0 \times -\infty$ ». Pour la résorber, deux solutions s'offrent à nous :

- ou on applique la règle de croissance comparée : $\lim_{\substack{x\to 0\\x>0}} x \ln(|x|) = 0$ et $\lim_{\substack{x\to 0\\x<0}} x \ln(|x|) = 0$ car toute fonction polynômiale
- « l'emporte » sur la fonction logarithme népérien
- ou on distingue deux cas (ce que nous aurons à faire tôt ou tard !) :

Si x > 0, |x| = x donc $f(x) = x \ln(x)$ et alors $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0$ (limite bien connue, elle aussi de « croissance comparée »)

Si x < 0, |x| = -x donc $f(x) = x \ln(-x) = -(-x) \ln(-x)$. En posant u = -x, on se retrouve à examiner la limite $\lim_{\substack{u \to 0 \\ u > 0}} -u \ln(u)$ qui est identique à la précédente. Ainsi $\lim_{\substack{x \to 0 \\ x < 0}} -(-x) \ln(-x) = 0$ c'est-à-dire $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = 0$.

Sur $]-\infty;0[$ et $]0;+\infty[$, f est dérivable en tant que composée et produit de fonctions qui le sont.

Pour tout $x \in]-\infty;0[$, puisque $f(x) = x \ln(-x)$, on en déduit, par applications successives des formules de dérivation

$$(u \times v)' = u' \times v + u \times v'$$
 et $(\ln(u))' = \frac{u'}{u}$, que $f'(x) = 1 \times \ln(-x) + x \times \frac{-1}{-x} = \ln(-x) + 1$

Pour tout $x \in]0; +\infty[$, puisque $f(x) = x \ln(x)$, on en déduit que $f'(x) = 1 \times \ln(x) + x \times \frac{1}{x} = \ln(x) + 1$

2) Puisque pour tout
$$x \in]0; +\infty[$$
, $f'(x) = \ln(x) + 1$, on résout : $f'(\lambda) = 0 \Leftrightarrow \ln(\lambda) = -1 \Leftrightarrow \lambda = e^{-1} = \frac{1}{e}$

Puisque $2,5 \le e \le 3$, $\frac{1}{3} \le \frac{1}{e} \le \frac{1}{2.5}$. Comme $\frac{1}{3} \ge 0,3$ et $\frac{1}{2.5} = 0,4$, on trouve l'encadrement annoncé.

3) Pour tout $x \in]0; +\infty[$, $f'(x) > 0 \Leftrightarrow \ln(x) > -1 \Leftrightarrow x > \lambda$. Ainsi, la fonction f est strictement décroissante sur $]0; \lambda[$ et strictement croissante sur $]\lambda; +\infty[$, d'où le tableau de variations (avec $f(\lambda) = \lambda \ln(\lambda) = \frac{1}{e} \ln(\frac{1}{e}) = \frac{1}{e} \times (-1) = -\frac{1}{e}$)

х	()	Ã		+00
f'(x)		_	0	+	
f(x)		0 \	\frac{1}{\rho}	7	+∞

4) On effectue une intégration par parties sur l'intervalle [1;x], avec x>1

$$G(x) = \int_{1}^{x} g(t)dt = \int_{1}^{x} 1 \times \ln(t)dt$$

En notant $u(t) = \ln(t) \Rightarrow u'(t) = \frac{1}{t}$ et $v'(t) = 1 \Rightarrow v(t) = t$, fonctions toutes les deux continûment dérivables sur [1;x], on obtient $G(x) = [u(t)v(t)]_1^x - \int_1^x u'(t)v(t)dt = [t \ln t]_1^x - \int_1^x t dt = x \ln x - 1 \times \ln(1) - [t]_1^x = x \ln x - x + 1$

La fonction G définie sur $[1;+\infty[$ par $G(x) = x \ln x - x + 1]$ est donc la primitive de la fonction g définie par $g(x) = \ln x$, qui s'annule en 1. Mais puisque toutes les primitives de la fonction g sont définies « à une constante près » ; la fonction $[x \to x \ln x - x]$ est aussi une primitive de g.

Exercice n°3

Notons A l'événement « le lancer s'effectue avec la pièce truquée » et B l'événement « le lancer s'effectue avec la pièce équilibrée ». L'énoncé nous fournit $p(A) = p(B) = \frac{1}{2}$.

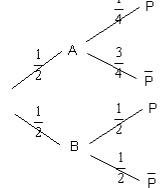
1) (a) Notons P la probabilité d'obtenir Pile lors d'un lancer. L'énoncé nous fournit $p_A(P) = \frac{1}{4}$ donc $p_A(\overline{P}) = 1 - \frac{1}{4} = \frac{3}{4}$; et $p_B(P) = \frac{1}{2}$ donc $p_B(\overline{P}) = 1 - \frac{1}{2} = \frac{1}{2}$.

Ceci peut se traduire par l'arbre de probabilités

La formule des probabilités totales appliqué au système complet $\{A; B\}$ fournit :

$$p(P) = p(A \cap P) + p(B \cap P) = p(A) \times p_A(P) + p(B) \times p_B(P) = \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$$

(b) On demande
$$p_P(A) = \frac{p(A \cap P)}{p(P)} = \frac{\frac{1}{2} \times \frac{1}{4}}{\frac{3}{8}} = \frac{1}{8} \times \frac{8}{3} = \frac{1}{3}$$



(c) Notons P_1, P_2, P_3 les probabilités d'obtenir Pile respectivement aux tirages n°1,2 et 3. On peut ainsi dresser l'arbre de probabilité :

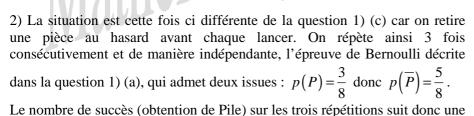
Raisonnons avec l'événement contraire de « obtenir au moins une fois pile », est « obtenir trois fois face ». D'après la formule des probabilités totales, ce dernier événement a pour probabilité :

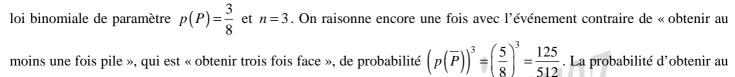
$$p(F_1 \cap F_2 \cap F_3) = p(A \cap F_1 \cap F_2 \cap F_3) + p(B \cap F_1 \cap F_2 \cap F_3)$$

$$= p(A) \times p_A(F_1 \cap F_2 \cap F_3) + p(B) \times p_B(F_1 \cap F_2 \cap F_3)$$

$$= \frac{1}{2} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{27}{128} + \frac{1}{16} = \frac{35}{128}$$

La probabilité d'obtenir au moins une fois pile avec une pièce choisie est donc égale à 1-





moins une fois pile sur les trois lancers (et choix) est donc $1 - \frac{125}{512} = \frac{387}{512}$

3) Les résultats des deux pièces sont indépendants l'un de l'autre. Si on note
$$P_A$$
 l'événement « obtenir Pile à l'aide de la pièce truquée » et P_B l'événement « obtenir Pile à l'aide de la pièce équilibrée», l'événement cherché aura donc une probabilité égale à :

$$p(P_A \cap P_B) + p(F_A \cap F_B) = p(P_A) \times p(P_B) + p(F_A) \times p(F_B) = \frac{1}{4} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{2} = \frac{1}{2}$$

Exercice n°4

1)
$$A(x) = (x-1)(x+1)(x-2) = (x^2-1)(x-2) = x^3-2x^2-x+2$$

2) (a) On pose
$$X = e^x$$
. L'équation $e^{3x} - 2e^{2x} - e^x + 2 = 0 \Leftrightarrow (e^x)^3 - 2(e^x)^2 - e^x + 2 = 0$ devient alors équivalente à $X^3 - 2X^2 - X + 2 = 0 \Leftrightarrow (X - 1)(X + 1)(X - 2) = 0$ (d'après la factorisation de la question (1))

Pour qu'un produit de facteurs soit nul, il faut et il suffit qu'au moins l'un d'entre eux le soit.

Ainsi $(X-1)(X+1)(X-2)=0 \Leftrightarrow X=1$ ou X=-1 ou X=2. En «revenant» à l'inconnue x, on a donc $e^x = 1$ ou $e^x = -1$ ou $e^x = 2$. Puisque pour tout réel x, $e^x > 0$, l'équation $e^x = -1$ n'admet pas de solutions réelle. En revanche $e^x = 1 \Leftrightarrow x = 0$ et $e^x = 2 \Leftrightarrow x = \ln 2$. Ainsi $S_a = \{0, \ln 2\}$

(b) Par bijectivité de la fonction exponentielle,
$$e^{x^3+2} = e^{2x^2+x} \Leftrightarrow x^3+2 = 2x^2+x \Leftrightarrow x^3-2x^2-x+2=0$$

D'après la factorisation de la question (1), $x^3 - 2x^2 - x + 2 = 0 \Leftrightarrow (x-1)(x+1)(x-2) = 0$. Pour qu'un produit de facteurs soit nul, il faut et il suffit qu'au moins l'un d'entre eux le soit.

Ainsi
$$(x-1)(x+1)(x-2) = 0 \Leftrightarrow x = 1$$
 ou $x = -1$ ou $x = 2$. Donc $S_b = \{-1;1;2\}$

(c) Examinons d'abord l'ensemble de définition de l'équation $\ln(x^3 + 2) = \ln(2x^2 + x)$.

L'équation est bien définie si et seulement si
$$\begin{cases} x^3 + 2 > 0 \\ 2x^2 + x > 0 \end{cases} \Leftrightarrow \begin{cases} x^3 > -2 \\ x(2x+1) > 0 \end{cases} \Leftrightarrow \begin{cases} x > \sqrt[3]{-2} \\ x \in] -\infty; -\frac{1}{2} [0]; +\infty[$$

L'ensemble de définition de l'équation est donc $\sqrt[3]{-2}$; $-\frac{1}{2}$ $\left[\cdot \cdot \right]$ 0; $+\infty$ [. Par bijectivité de la fonction logarithme népérien,

pour tout
$$x \in \left] \sqrt[3]{-2}; -\frac{1}{2} \left[\, \cup \, \right] 0; +\infty \left[\, , \, \ln \left(x^3 + 2 \right) = \ln \left(2x^2 + x \right) \Leftrightarrow x^3 + 2 = 2x^2 + x \Leftrightarrow x^3 - 2x^2 - x + 2 = 0 \, . \right] \right]$$
 On connaît les solutions de cette dernière équation (cf question (b)), et elles sont toutes les trois compatibles avec l'ensemble de définition. Ainsi $\left[S_c = \left\{ -1; 1; 2 \right\} \right]$

(d) L'équation est définie sur \mathbb{R} , puisque les quantités $|x|^3 + 2$ et $2x^2 + |x|$ sont strictement positives. En remarquant que pour tout réel x, $x^2 = |x|^2$, on va poser X = |x|. L'équation $\ln(|x|^3 + 2) = \ln(2x^2 + |x|) \Leftrightarrow \ln(|x|^3 + 2) = \ln(2|x|^2 + |x|)$ devient alors équivalente à $\ln(X^3 + 2) = \ln(2X^2 + X)$, avec la condition $X \ge 0$ (puisque X = |x|). D'après la question (c), on a X=-1; 1 2. La valeur X=-1 est éliminée par la condition $X \ge 0$ (l'équation |x| = -1 n'admet pas de solution). En « revenant » à l'inconnue x, on a donc $X=1 \Leftrightarrow |x|=1 \Leftrightarrow x=-1$ ou x=1 ou $X=2 \Leftrightarrow |x|=2 \Leftrightarrow x=-2$ ou x=2. Ainsi $S_d = \{-2; -1; 1; 2\}$

(e) Examinons d'abord l'ensemble de définition de l'équation $\ln(x^3 - x^2 - 3x + 3) = \ln(x^2 - 2x + 1)$.

Notons $f(x) = x^3 - x^2 - 3x + 3$ et $g(x) = x^2 - 2x + 1$. En remarquant que f(1) = 0, on peut donc factoriser f(x) par x-1. On obtient $f(x) = (x-1)(x^2-3)$, d'où une factorisation aboutie égale à $f(x) = (x-1)(x-\sqrt{3})(x+\sqrt{3})$, qui nous

permet de dresser le tableau de signes de f(x):

Ainsi
$$f(x) > 0 \Leftrightarrow x \in \left[-\sqrt{3}; 1 \right[\cup \sqrt{3}; +\infty \right]$$

L'étude du signe de $g(x) = x^2 - 2x + 1$ est plus simple puisque pour tout réel x, $g(x) = (x-1)^2$, donc $g(x) > 0 \Leftrightarrow x \in]-\infty; 1[\cup]1; +\infty[$. Les deux conditions devant être réalisées simultanément, l'ensemble de définition de l'équation est donc $\left|-\sqrt{3};1\right| \cup \left|\sqrt{3};+\infty\right|$

Par bijectivité de la fonction logarithme népérien,

х	- 1	3	1 √3		
x-1	_	_	0	+	+
$x = \sqrt{3}$	_	_		— 0) +
$x + \sqrt{3}$	— þ	+		+	+
f(x)	— ф	+	0	— 0) +

$$\ln\left(x^3 - x^2 - 3x + 3\right) = \ln\left(x^2 - 2x + 1\right) \Leftrightarrow x^3 - x^2 - 3x + 3 = x^2 - 2x + 1 \Leftrightarrow x^3 - 2x^2 - x + 2 = 0$$

Cette dernière équation ayant pour solution -1 ; 1 et 2, par compatibilité avec l'ensemble de définition de l'équation, on obtient $|S_e| = \{-1, 2\}$

(f) Examinons d'abord l'ensemble de définition de l'équation $\ln(x^3 - x^2 - 3x + 3) = 2\ln(1 - x)$.

Le membre de gauche $\ln(x^3 - x^2 - 3x + 3)$ est défini si et seulement si $x \in \left] -\sqrt{3}; 1 \right[\cup \left] \sqrt{3}; +\infty \right[$ (cf question (e)), tandis que le membre de droite est défini si et seulement si $1-x>0 \Leftrightarrow x \in]-\infty;1[$.

Les deux conditions devant être réalisées simultanément, l'ensemble de définition de l'équation est donc $-\sqrt{3}$; 1. Pour

tout
$$x \in \left] -\sqrt{3}; 1 \right[$$
, par bijectivité de la fonction logarithme népérien,

$$\ln\left(x^3 - x^2 - 3x + 3\right) = 2\ln\left(1 - x\right) \Leftrightarrow \ln\left(x^3 - x^2 - 3x + 3\right) = \ln\left[\left(1 - x\right)^2\right]$$

$$\Leftrightarrow x^3 - x^2 - 3x + 3 = 1 - 2x + x^2 \Leftrightarrow x^3 - 2x^2 - x + 2 = 0$$

$$\Leftrightarrow x^3 - x^2 - 3x + 3 = 1 - 2x + x^2 \Leftrightarrow x^3 - 2x^2 - x + 2 = 0$$

Cette dernière équation ayant pour solution -1 ; 1 et 2, par compatibilité avec l'ensemble de définition de l'équation, on obtient $S_f = \{-1\}$

fin du corrigé